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INTRODUCTION

One of the more important measurements to be made in wind-tunnel or flight test-

ing _s the distribution of local static pressure over the test surface. This distri-

bution is usually determined by means of orifices connected via tubing to pressure

transducers. The diameter of the orifice and the diameter and the length of the

tubing can, however, affect the local flow and influence the measured static pres-

sure. (See refs. I to 3.) In addition, the fluid in the orifice can be set in

motion by the external flow. (See ref. 3.) As an example, an orifice could generate

a disturbance within a laminar boundary layer which could cause premature transi-

tion. This disturbance could be caused by a Helmholtz resonance within the connect-

ing tubing. (See ref. 3.) Additional effects on the boundary layer can result if

the orifice has burrs, rounded edges, or other imperfections or if a number of

orifices are aligned with the flow.

A fundamental study of the interaction of a turbulent boundary layer and surface

static-pressure orifices on _ flat plate was reported in reference 3. The results

from that study indicate that the boundary layer downstream of the orifice was sig-

nificantly altered by the orifice.

The present investigation is primarily concerned with the interaction of a

laminar boundary layer and surface static-pressure orifices. The investigation was

conducted on an airfoil designed to achieve extensive natural laminar flow, the NASA

NLF(1)-0215F. (See ref. 4.) The effects of both favorable and adverse pressure

gradients were studied. No three-dimensional configurations were tested.

The investigation was conducted in the Langley Low-Turbulence Pressure Tunnel

(LTPT) (ref. 5) at Reynolds numbers based on airfoil chord from approximately

0.5 × 106 to 6.0 × 106 with Mach number varying accordingly from about

0.03 to 0.42.

SYMBOLS

Values are given in both SI and U.S. Customary Units.

lations were made in U.S. Customary Units.

Cf boundary-layer skin-friction coefficient

Cp

c

d

M

R

Measurements and calcu-

pressure coefficient

airfoil chord, cm (_n.)

diameter of orifice, _m (in.)

length of tubing, mm (in.)

free-stream Mach number

Reynolds number based on free-stream conditions and airfoil chord



Rd

R6,

Re

X

x T

Y

6*

Reynolds number based on local conditions and orifice diameter

Reynolds number based on local conditions and boundary-layer displacement

thickness

Reynolds number based on local conditions and boundary-layer momentum

thickness

airfoil abscissa, cm (_n.)

transition location, cm (in.)

model spanwise station, cm (in.)

angle of attack relative to chord line, deg

boundary-layer displacement thickness, mm (in.)

EXPERIMENTAL PROCEDURE

Wind Tunnel

The Langley Low-Turbulence Pressure Tunnel (LTPT) (ref. 5) is a continuous-flow,

variable-pressure wind tunnel with controls which permit the independent variation of

stagnation pressure and Mach number. The test section is 91.44 cm (36.00 in,) wide

by 228.6 cm (90.00 in.) high. Hydraulically actuated circular plates provide posi-

tioning and attachment for the two-dimensional model, The plates, 101.6 cm

(40.00 in.) in diameter, are flush with the tunnel sidewalls and rotate with the

model. The model ends were mounted to rectangular model-attachment plates as shown

in figure I.

Model

The forward portion of the wind-tunnel model of the NASA NLF(1)-0215F airfoil

consisted of an aluminum spar surrounded by black plastic filler with two thin layers

of fiberglass forming the aerodynamic surface. The 25-percent-chord, simple flap was

constructed of aluminum and attached to the forward portion of the model by aluminum

brackets. The flap was not deflected during these tests. The model had a chord of

60.960 cm (24.000 in.) and a span of 91.44 cm (36.00 in.). Upper- and lower-surface

chordwise orifices were located 7.62 cm (3.00 in.) to one side of the midspan at the

chord stations listed in table I(a). Spanwise orifices were located in the upper

surface at the chord and span stations listed in table I(b). All these orifices were

1.0 mm (0.040 in.) in diameter with the axes perpendicular to the surface. A sketch

of a typical orifice and a close-up photograph are shown in figure 2. The connecting

tubes were approximately 2.4 m (8.0 ft) in length, closed at the ends, and contained

no sharp behds (The radius of the tube was much larger than the inside diameter of

the tube.) I _ition, blind orifices having diameters of 0.25 mm (0.010 in.),

0.51 mm (0.02 .n.), and 1.0 mm (0.040 in.) were drilled to various depths at the

chord and span stations listed in table II. These orifices, of course, had no

connecting tubes. The locations of all the upper-surface orifices (chordwise,

spanwlse, and blind) are shown in figure 3. The model surface was sanded with

No. 600 dry silicon carbiCe paper to insure an aerodynamically smooth finish.



Tests and Methods

The model was tested at Reynolds numbers based on airfoil chord from approxi-

mately 0.5 × 106 to 6.0 x 106 with Mach number varying accordingly from about 0.03

to 0.42.

For all the runs An the test, the model upper surface was coated with oll to

determine the location as well as the nature of the boundary-layer transition from

laminar to turbulent flow. (See ref. 6.) After the oil-flow pattern had stabilized,

photographs were taken. The run was then terminated and the pattern was inspected

and recorded with sketches and measurements to aid in the interpretation of the

photographs. It should be noted that a marked contrast between the forward portion

of the model and the flap exists in all the oil-flow photocraphs because of the

different materials used for the two surfaces - black plastic and bare aluminum,

respectively. (See fig. I.)

No static-pressure measurements were made. The pressure distributions for

comparable conditions had been obtained previously. (See ref. 4.)

DISCUSSION OF RESULTS

Oil-Flow Patterns

The pressure distribution for the NLF(1)-0215F airfoil at an angle of attack of

0.0 ° for a Reynolds number of 3.0 x 106 and a Mach number of 0.10 is shown in fig-

ure 4. At this angle of attack, a favorable pressure gradient exists along the upper

surface to about 0.40c. The oil-flow patterns on the upper surface at this angle of

attack for various Reynolds numbers are shown in figure 5. The turbulent wedges in

figures 5(d) to 5(f) were caused by contaminants in the oil. No orifice-induced

disturbances are apparent for the forward 0.40c of the upper surface at any of the

Reynolds numbers tested at this angle of attack.

The6Pressure distribution at an angle of attack of 5.0 ° for a Reynolds number of
3.0 x 10 and a Mach number of 0.10 is shown in figure 6. At this angle of attack,

an adverse pressure gradient exists along the upper surface from about 0.05c to the

trailing edge. The oil-flow patterns on the upper surface at this angle of attack

for various Reynolds numbers are shown in figure 7. For R = 0.5 x 106 and

1.0 x 106 (figs. 7(a) and 7_b), respectively), no orifice-induced disturbances are

apparent. For R = 1.5 x 10 u (fig. 7(c)), premature transition occurs downstream

of the largest forward orifices (d = 1.0 mm (0.040 in.)). For this Reynolds number,

the orifices do not induce the classic turbulent wedges typical of three-dimensional

disturbances. Instead, they induce disturbances which are carried downstream

resulting in the "scallop-shaped," turbulent regions shown in figure 7(c). ?or

R = 2.0 x 106 (fig. 7(d)), the scallops occur downstream of the larger forward

orifices (d = 0.51 mm (0.020 in.) and 1.0 mm (0.040 in.)) and farther forward than

for R = 1.5 x 106 . The single wedge shown in figure 7(d) is the result of a con-

taminant in the oil. For R = 3.0 x 106 (fig. 7(e)), the scallops occur downstream

of orifices of all three diameters and have moved farther forward. A turbulent wedge

that originates at the chordwise orifice row has also formed. This wedge has a

spreading angle comparable to that of the classic turbulent wedge. (For example, see

ref. 7.) The other two wedges shown in figure 7(e) are the result of contaminants.

The pattern shown in figure 7(e) continues to move forward with increasing Reynolds

number. (See figs. 7(f) and 7(g).)



Experimental Results

The effect of tube length-to-diameter ratio for single orifices on transition

location on the upper surface at a = 5.0 ° (adverse pressure gradient) is shown in

figure 8. The transition location is influenced by t/d, although the trend for a

given diameter is not consistent over the Reynolds number range of this investi-

gation. The transition locations corresponding to the orifices with an t/d of 2400

are close to those corresponding to the orifices with lower t/d ratios. However

the trend between the lower t/d ratios and an t/d of 2400 is not known and,

therefore, no curve has been faired for that portion of figure 8. It is apparent,

however, that the orifices with smaller diameters have less influence.

Additional correlations were atte_ed with the following parameters: d/6*,

Rd C_--_,_ and R(d/c)_Cf/2. None was successful. This was not tooR6,, R 8, R d ,

surprising in that none of these "accepted" parameters contained the length of the

tube.

CONCLUDING REMARKS

An investigation of the interaction of a laminar boundary layer and surface

static-pressure orifices was conducted on a natural-laminar-flow airfoil, the NASA

NLF(1)-0215F, in the Langley Low-Turbulence Pressure Tunnel. The effects of both

favorable and adverse pressure gradients were studied at Reynolds numbers based on

airfoil chord from approximately 0.5 x 106 to 6.0 × 106 with Mach number varying

accordingly from about 0.03 to 0.42.

It was found that the smaller the diameter of the orifice, the less likely it

will cause premature transition. Other considerations will, of course, limit the

reduction in orifice diameter. Locating the orifices in a chordwise row aligned with

the flow appears to have an additive, adverse effect on transition. Tube length-to-

orifice diameter ratio does not seem to have a consistent influence on transition.

Langley Research Center

National Aeronautics and Space Administration

Hampton, VA 23665

June 9, 1982
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_JF POOR QUALITY
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TABLE I.- CHORDWISE AND SPANWISE ORIFICES

[c = 60.960 cm (24.000 in.), d = 1.0 mm (0.040 in.), I/d = 2400]

(a) Chordwise (b) Spanwise

x/c y/c x/c

0.00034

.00570

.01065

.01542

.02033

.02545

.03083

.04039

.O5O59

.06058

.07545

.10064

.15077

.20071

.25074

.30081

.35098

.40048

.45053

.50089

.55044

.60092

.65068

.70050

.74660

.80261

.85185

.90194

.95078

.97480

0.12417

.12446

.12411

.12402

.12430

.12450

.12417

.12474

.12453

.12417

.12409

.12451

.12408

.12432

.12433

.12449

.12430

.12442

.12443

.12398

.12398

.12428

.12413

.12409

.12407

.12512

.12517

.12532

.12576

.12538

0.05039

.05134

.05196

.05265

.05333

.05419

.05434

.90229

.90182

.90224

.90225

.90204

.90205

.90224

y/C

0.20714

.29105

.37410

.45734

.54113

.62328

.70698

.20805

.29160

.37444

.45785

.54144

.62478

.70866



ORIGINAL /'_A_E _
OF POOR QUALITY

x/c

0.07558

.10043

.15116

.20096

.25121

.30085

.35089

.05030

.05034

.05038

.05028

.05031

.05023

.05001

.05022

.05027

.20096

.20066

.20088

.20083

.20069

.20071

.20081

.20077

.20071

TABLE II.- BLIND ORIFICES

[c = 60.960 cm (24.000 in.)]

y/c

0.04079

.04087

.04084

.04127

.04109

.04110

.04109

-.07923

-.15435

-.22934

-.30395

-.37941

-.45423

-.52878

-.60412

-.67907

-.04195

-.11710

-.19186

-.26699

-.34201

-.41700

-.49204

-.56677

-.64188

mm

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

.51

.25

1.0

.51

.25

1.0

.51

.25

i.0

1.0

.25

.51

1.0

.25

.51

1.0

.51

d

in.

0.040

.040

.040

.040

.040

.040

.040

.040

.020

.010

.040

.020

.010

.040

.020

.010

.040

.040

.010

.020

.040

.010

.020

.040

,020

_/d

25

25

26

25

25

26

26

21

3O

34

13

23

15

6.2

13

26

25

25

31

30

12

12

25

6.8

13
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ORIGINAL PAG_ iS
OF POOR QUALITY

-- Accessto pressure tubes._J
-_ Diam. = 1.67c ............. -/ ............... ---_ ,

/ /

i

A
Airflow

Circular plate --_

_11111111//I/X1177/-7_

A

.... _%,--'_

....... _--Flap hinge line

.f /I /t" "_/ // //%

I. 50C

Topview

Tunnel center line _ -

Flap hinge line._ /_ Model-attachmentplate

*--;-----_,- --__ Zero.angle.of.attack reference
_,_ _ -- . _'_'_'_'_'_'_'_'_'-__t

c J:
Endview, sectionA-A

Figure I.- Sketch of typical airfoil model mounted in the Langley Low-Turbulence

Pressure Tunnel, All dimensions are in terms of model chord, c = 61.0 cm

(24.0 in.).
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.48

•46 --

.4_--

•42 --

•400

d, mm (in.)

(!)1.0(0.040)

(3

30 40 2400

I.ld

(a) IR= 1.5 x 106s M = 0.10o

Figure 8.- Effect of length-to-diameter ratio for single orifice on transition

location on upper surface of NLF(1)-0215F airfoll at _ = 5° .
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O 1.0(0.040)
r-I .51 (.020)

C)

l I l _l
10 20 30 40 2400

_Id

(b) R TM 2.0 _ 106I M _ 0.14.

_'igure _.- eontlnt_ed.
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Figure _.- Continued.

29

I I



ORIGINAL PAGE iS
OF POOR OUALITY

.28 --

.26

.24

XT/c. 22

.2O

.18

•160
I I l,
10 20 )0

_Id

kt---N:ural transition

d, mm (in.)

0 1.0(0.040)
D .51(.020)

.25(.010)

4O

(9

J
2400

(_) R = 6.0 x I06; M = 0.42.

Fiqure 8,- Conelu,_ed.

3O


